Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Sci Total Environ ; 927: 172190, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38575025

ABSTRACT

Identification of methods for the standardized assessment of bacterial pathogens and antimicrobial resistance (AMR) in environmental water can improve the quality of monitoring and data collected, support global surveillance efforts, and enhance the understanding of environmental water sources. We conducted a systematic review to assemble and synthesize available literature that identified methods for assessment of prevalence and abundance of bacterial fecal indicators and pathogens in water for the purposes of monitoring bacterial pathogens and AMR. After screening for quality, 175 unique publications were identified from 15 databases, and data were extracted for analysis. This review identifies the most common and robust methods, and media used to isolate target organisms from surface water sources, summarizes methodological trends, and recognizes knowledge gaps. The information presented in this review will be useful when establishing standardized methods for monitoring bacterial pathogens and AMR in water in the United States and globally.


Subject(s)
Enterococcus , Environmental Monitoring , Escherichia coli , Salmonella , Water Microbiology , Enterococcus/isolation & purification , Salmonella/isolation & purification , Environmental Monitoring/methods , Escherichia coli/isolation & purification
2.
Microbiol Spectr ; 12(4): e0353623, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38376152

ABSTRACT

Alternative irrigation waters (rivers, ponds, and reclaimed water) can harbor bacterial foodborne pathogens like Salmonella enterica and Listeria monocytogenes, potentially contaminating fruit and vegetable commodities. Detecting foodborne pathogens using qPCR-based methods may accelerate testing methods and procedures compared to culture-based methods. This study compared detection of S. enterica and L. monocytogenes by qPCR (real-time PCR) and culture methods in irrigation waters to determine the influence of water type (river, pond, and reclaimed water), season (winter, spring, summer, and fall), or volume (0.1, 1, and 10 L) on sensitivity, accuracy, specificity, and positive (PPV), and negative (NPV) predictive values of these methods. Water samples were collected by filtration through modified Moore swabs (MMS) over a 2-year period at 11 sites in the Mid-Atlantic U.S. on a bi-weekly or monthly schedule. For qPCR, bacterial DNA from culture-enriched samples (n = 1,990) was analyzed by multiplex qPCR specific for S. enterica and L. monocytogenes. For culture detection, enriched samples were selectively enriched, isolated, and PCR confirmed. PPVs for qPCR detection of S. enterica and L. monocytogenes were 68% and 67%, respectively. The NPV were 87% (S. enterica) and 85% (L. monocytogenes). Higher levels of qPCR/culture agreement were observed in spring and summer compared to fall and winter for S. enterica; for L. monocytogenes, lower levels of agreement were observed in winter compared to spring, summer, and fall. Reclaimed and pond water supported higher levels of qPCR/culture agreement compared to river water for both S. enterica and L. monocytogenes, indicating that water type may influence the agreement of these results. IMPORTANCE: Detecting foodborne pathogens in irrigation water can inform interventions and management strategies to reduce risk of contamination and illness associated with fresh and fresh-cut fruits and vegetables. The use of non-culture methods like qPCR has the potential to accelerate the testing process. Results indicated that pond and reclaimed water showed higher levels of agreement between culture and qPCR methods than river water, perhaps due to specific physiochemical characteristics of the water. These findings also show that season and sample volume affect the agreement of qPCR and culture results. Overall, qPCR methods could be more confidently utilized to determine the absence of Salmonella enterica and Listeria monocytogenes in irrigation water samples examined in this study.


Subject(s)
Listeria monocytogenes , Salmonella enterica , Salmonella enterica/genetics , Listeria monocytogenes/genetics , Fresh Water/microbiology , Rivers , Water , Food Microbiology
3.
Microbiol Resour Announc ; 13(1): e0047723, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38032210

ABSTRACT

Here, we examine surface waters as a modality to better understand baseline antimicrobial resistance (AMR) across the environment to supplement existing AMR monitoring in pathogens associated with humans, foods, and animals. Data from metagenomic and quasimetagenomic (shotgun sequenced enrichments) are used to describe AMR in Maryland surface waters from high and low human impact classifications.

4.
Sci Total Environ ; 905: 167189, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37748604

ABSTRACT

Developing effective and sensitive detection methods for antimicrobial resistant Salmonella enterica from surface water is a goal of the National Antimicrobial Resistance Monitoring System (NARMS). There are no specified methods for recovery of S. enterica in surface waters in the U.S. A multi-laboratory evaluation of four methods - bulk water enrichment (BW), vertical Modified Moore Swab (VMMS), modified Standard Method 9260.B2 (SM), and dead-end ultrafiltration (DEUF) - was undertaken to recover S. enterica from surface water. In Phase 1, one-liter volumes of water were collected from the same site on five different dates. Water was shipped and analyzed at four different laboratory locations (A, B, C, and D) for recovery of 1) inoculated fluorescent S. Typhimurium strain (ca. 30 CFU/L) and 2) Salmonella present in the water sampled. At each location, BW, VMMS, or SM recovery was performed on five separate 1 L water samples. Twenty 1 L water samples were subjected to each recovery method, and overall, sixty 1 L samples were assayed for Salmonella. Inoculated, fluorescent Salmonella Typhimurium and environmental Salmonella spp. were recovered from 65 % (39/60) and 45 % (27/60) of water samples, respectively. BW, VMMS, and SM recovered fluorescent S. Typhimurium from 60 %, 60 %, and 75 % of inoculated samples, respectively. Analysis by Chi-squared test determined laboratory location had a significant (p < 0.05) effect on fluorescent S. Typhimurium recovery compared to method or date of water collection. In Phase 2, recovery of inoculated fluorescent S. Typhimurium from 1 L samples by SM and DEUF was compared at laboratory locations B and D. SM and DEUF recovered fluorescent S. Typhimurium from 100 % (20/20) and 95 % (19/20) of inoculated water samples, respectively; laboratory location (p > 0.05) did not affect Salmonella recovery. Uniform laboratory methodology and training should be prioritized in conducting Salmonella recovery from surface water in laboratories.


Subject(s)
Salmonella enterica , Anti-Bacterial Agents/pharmacology , Laboratories , Drug Resistance, Bacterial , Salmonella typhimurium , Water
5.
J Food Prot ; 86(4): 100058, 2023 04.
Article in English | MEDLINE | ID: mdl-37005038

ABSTRACT

Enteric bacterial pathogen levels can influence the suitability of irrigation water sources for fruits and vegetables. We hypothesize that stable spatial patterns of Salmonella enterica and Listeria monocytogenes levels may exist across surface water sources in the Mid-Atlantic U.S. Water samples were collected at four streams and two pond sites in the mid-Atlantic U.S. over 2 years, biweekly during the fruit and vegetable growing seasons, and once a month during nongrowing seasons. Two stream sites and one pond site had significantly different mean concentrations in growing and nongrowing seasons. Stable spatial patterns were determined for relative differences between the site concentrations and average concentration of both pathogens across the study area. Mean relative differences were significantly different from zero at four of the six sites for S. enterica and three of six sites for L. monocytogenes. There was a similarity between the mean relative difference distribution between sites over growing season, nongrowing season, and the entire observation period. Mean relative differences were determined for temperature, oxidation-reduction potential, specific electrical conductance, pH, dissolved oxygen, turbidity, and cumulative rainfall. A moderate-to-strong Spearman correlation (rs > 0.657) was found between spatial patterns of S. enterica and 7-day rainfall, and between relative difference patterns of L. monocytogenes and temperature (rs = 0.885) and dissolved oxygen (rs = -0.885). Persistence in ranking sampling sites by the concentrations of the two pathogens was also observed. Finding spatially stable patterns in pathogen concentrations highlights spatiotemporal dynamics of these microorganisms across the study area can facilitate the design of an effective microbial water quality monitoring program for surface irrigation water.


Subject(s)
Listeria monocytogenes , Salmonella enterica , Mid-Atlantic Region , Water Quality , Seasons
6.
J Food Prot ; 86(1): 100024, 2023 01.
Article in English | MEDLINE | ID: mdl-36916591

ABSTRACT

Human norovirus (HuNoV) has been implicated as the leading cause of foodborne illness worldwide. The ability of HuNoV to persist in water can significantly impact food safety as agriculture and processing water could serve as vehicles of virus transmission. This study focused on the persistence and infectivity of the HuNoV surrogate viruses, murine norovirus (MNV), and Tulane virus (TV), after prolonged storage in diverse environmental water types currently used for agricultural irrigation. In this study, vegetable processing water (VW), brackish tidal surface water (SW), municipal reclaimed water (RW), and pond water (PW) were inoculated with each virus in a 1:10 v/v ratio containing virus at 3.5-4.5 logPFU/mL and stored at 16°C for 100 days. This time and temperature combination was chosen to mimic growing and harvest conditions in the mid-Atlantic area of the United States. Samples were then assayed for the presence of viral RNA using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) approximately weekly throughout the study. Persistence of MNV and TV was not significantly different (p > 0.05) from one another in any water sample (n = 7) or the control (HBSS). However, there was variability observed in viral persistence across water samples with significant differences observed between several water samples. The presence of intact viral capsids enclosing the genomes of MNV and TV were evaluated by an RNase assay coupled with RT-qPCR on specific timepoints and determined to be intact up to and at 100 days after inoculation. TV was also shown to remain infectious in a cell culture assay (TCID50) up to 100 days of incubation. These findings are significant in that the potential for not only detection of enteric viruses can occur long after a contamination event occurs but these viruses may also remain infectious.


Subject(s)
Norovirus , Humans , Animals , Mice , Food Contamination , Food Microbiology , Temperature , Water
7.
Environ Sci Technol ; 56(21): 15019-15033, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36194536

ABSTRACT

Reduced availability of agricultural water has spurred increased interest in using recycled irrigation water for U.S. food crop production. However, there are significant knowledge gaps concerning the microbiological quality of these water sources. To address these gaps, we used 16S rRNA gene and metagenomic sequencing to characterize taxonomic and functional variations (e.g., antimicrobial resistance) in bacterial communities across diverse recycled and surface water irrigation sources. We collected 1 L water samples (n = 410) between 2016 and 2018 from the Mid-Atlantic (12 sites) and Southwest (10 sites) U.S. Samples were filtered, and DNA was extracted. The V3-V4 regions of the 16S rRNA gene were then PCR amplified and sequenced. Metagenomic sequencing was also performed to characterize antibiotic, metal, and biocide resistance genes. Bacterial alpha and beta diversities were significantly different (p < 0.001) across water types and seasons. Pathogenic bacteria, such as Salmonella enterica, Staphylococcus aureus, and Aeromonas hydrophilia were observed across sample types. The most common antibiotic resistance genes identified coded against macrolides/lincosamides/streptogramins, aminoglycosides, rifampin and elfamycins, and their read counts fluctuated across seasons. We also observed multi-metal and multi-biocide resistance across all water types. To our knowledge, this is the most comprehensive longitudinal study to date of U.S. recycled water and surface water used for irrigation. Our findings improve understanding of the potential differences in the risk of exposure to bacterial pathogens and antibiotic resistance genes originating from diverse irrigation water sources across seasons and U.S. regions.


Subject(s)
Anti-Bacterial Agents , Disinfectants , United States , RNA, Ribosomal, 16S/genetics , Anti-Bacterial Agents/pharmacology , Longitudinal Studies , Bacteria/genetics , Drug Resistance, Microbial/genetics , Water , Agricultural Irrigation , Wastewater , Genes, Bacterial
8.
Curr Opin Biotechnol ; 78: 102805, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36162186

ABSTRACT

Foodborne pathogen contamination causes approximately 47 million cases of foodborne illness in the United States and renders thousands of pounds of food products inedible, aggravating the already dire situation of food loss. Reducing foodborne contamination not only improves overall global public health but also reduces food waste and loss. Phage biocontrol or phage-mediated reduction of bacterial foodborne pathogens in various foods has been gaining interest recently as an effective and environmentally friendly food-safety approach. Consequently, several commercial phage-based food-safety products have been developed and are increasingly implemented by the food industry in the United States. This review focuses on the use of phage biocontrol in mitigating bacterial pathogen contamination in various food products with a special emphasis on applications to fresh produce.


Subject(s)
Bacteriophages , Foodborne Diseases , Refuse Disposal , Humans , Food Microbiology , Food , Food Contamination , Foodborne Diseases/prevention & control , Foodborne Diseases/microbiology
9.
J Food Prot ; 85(12): 1842-1847, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36150096

ABSTRACT

ABSTRACT: Many studies have examined the survival of Escherichia coli and foodborne pathogens in agricultural soils. The results of these studies can be influenced by various growth conditions and growth media used when preparing cultures for an experiment. The objectives of this study were to (i) determine the growth curves of rifampin (R)-resistant E. coli in three types of growth media containing R: tryptic soy agar (TSA-R); tryptic soy broth (TSB-R); and poultry pellet extract (PPE-R) and (ii) evaluate the influence of growth media on the survival of E. coli in agricultural soil. Poultry pellet extract (PPE) was prepared by filter sterilizing a 1:10 suspension of heat-treated poultry pellets in sterile water. Generic E. coli (TVS 353) acclimated to 80 µg/mL of R was grown in TSA-R, TSB-R, and PPE-R at 3.0 to 3.5 log CFU/mL and incubated at 37°C. Growth curves were determined by quantifying E. coli populations at 0, 4, 8, 16, 24, and 32 h. Soil microcosms were inoculated with E. coli (6.0 log CFU/g) previously cultured in one of the three media types and stored at 25°C, and soil samples were quantified for E. coli on days 0, 1, 3, 7, 14, 28, and 42. Growth curves and survival models were generated by using DMFit and GInaFiT, respectively. E. coli growth rates were 0.88, 0.77, and 0.69 log CFU/mL/h in TSA-R, TSB-R, and PPE-R, respectively. E. coli populations in the stationary phase were greater for cultures grown in TSA-R (9.4 log CFU/mL) and TSB-R (9.1 log CFU/mL) compared with PPE-R (7.9 log CFU/mL). The E. coli populations in the soil remained stable up to 3 days before declining. An approximate 2 log CFU/g decline of E. coli in soil was observed for each culture type between days 3 and 7, after which E. coli populations declined more slowly from days 7 to 42. A biphasic shoulder model was used to evaluate E. coli survival in soils on the basis of growth media. Using standardized culture growth preparation may aid in determining the complex interactions of enteric pathogen survival in soils.


Subject(s)
Escherichia coli O157 , Soil , Animals , Agar , Colony Count, Microbial , Culture Media , Food Microbiology , Plant Extracts , Poultry
10.
Appl Environ Microbiol ; 88(15): e0083722, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35862684

ABSTRACT

Phylogenetic distribution and extended spectrum ß-lactamase (ESBL) activity of Escherichia coli recovered from surface and reclaimed water in the mid-Atlantic U.S. were evaluated. Among 488 isolates, phylogroups B1 and A were the most and least prevalent, respectively. Water type, but not season, affected phylogroup distribution. The likelihood of detecting group A isolates was higher in reclaimed than pond (P < 0.01), freshwater river (P < 0.01) or brackish river (P < 0.05) water. Homogeneity in group distribution was lowest in pond water, where group B1 comprised 50% of isolates. Only 16 (3.3%) isolates exhibited phenotypic resistance to one or more cephalosporins tested and only four had ESBL activity, representing groups B1, B2 isolates, and D. Phylogroup was a factor in antimicrobial resistance (P < 0.05), with group A (8.7%) and D (1.6%) exhibiting the highest and lowest rates. Resistance to cefoxitin was the most prevalent. Multi- versus single drug resistance was affected by phylogroup (P < 0.05) and more likely in groups D and B1 than A which carried resistance to cefoxitin only. The most detected ß-lactam resistance genes were blaCMY-2 and blaTEM. Water type was a factor for blaCTX-M gene detection (P < 0.05). Phenotypic resistance to cefotaxime, ceftriaxone, cefuroxime and ceftazidime, and genetic determinants for ESBL-mediated resistance were found predominantly in B2 and D isolates from rivers and reclaimed water. Overall, ESBL activity and cephalosporin resistance in reclaimed and surface water isolates were low. Integrating data on ESBL activity and ß-lactam resistance among E. coli populations can inform decisions on safety of irrigation water sources and One Health. IMPORTANCE Extended spectrum ß-lactamase (ESBL) producing bacteria, that are resistant to a broad range of antimicrobial agents, are spreading in the environment but data remain scarce. ESBL-producing Escherichia coli infections in the community are on the rise. This work was conducted to assess presence of ESBL-producing E. coli in water that could be used for irrigation of fresh produce. The study provides the most extensive evaluation of ESBL-producing E. coli in surface and reclaimed water in the mid-Atlantic United States. The prevalence of ESBL producers was low and phenotypic resistance to cephalosporins (types of ß-lactam antibiotics) was affected by season but not water type. Data on antimicrobial resistance among E. coli populations in water can inform decisions on safety of irrigation water sources and One Health.


Subject(s)
Escherichia coli Infections , Escherichia coli , Anti-Bacterial Agents/pharmacology , Cefoxitin , Cephalosporin Resistance/genetics , Cephalosporins/pharmacology , Escherichia coli Infections/microbiology , Humans , Phylogeny , beta-Lactamases/genetics
11.
Microorganisms ; 10(7)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35889038

ABSTRACT

As more fresh fruits and vegetables are needed to meet the demands of a growing population, growers may need to start depending on more varied sources of water, including environmental, recycled, and reclaimed waters. Some of these sources might be susceptible to contamination with microbial pathogens, such as Listeria monocytogenes. Surveys have found this pathogen in water, soil, vegetation, and farm animal feces around the world. The frequency at which this pathogen is present in water sources is dependent on multiple factors, including the season, surrounding land use, presence of animals, and physicochemical water parameters. Understanding the survival duration of L. monocytogenes in specific water sources is important, but studies are limited concerning this environment and the impact of these highly variable factors. Understanding the pathogen's ability to remain infectious is key to understanding how L. monocytogenes impacts produce outbreaks and, ultimately, consumers' health.

12.
Sci Total Environ ; 843: 156976, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35768032

ABSTRACT

Climate change is stressing irrigation water sources, necessitating the evaluation of alternative waters such as harvested rainwater to determine if they meet water quality and food safety standards. We collected water, soil, and produce samples between June and August 2019 from two vegetable rain garden (VRG) sites in Frederick, Maryland that harvest rainwater using a first flush system, and deliver this water to produce through subsurface irrigation. The raised VRG beds include layers of gravel, sand, and soil that act as filters. We recorded the average surface soil moisture in each bed as well as antecedent precipitation. All water (n = 29), soil (n = 55), and produce (n = 57) samples were tested for generic E. coli using standard membrane filtration, and water samples were also tested for Salmonella spp. and Listeria monocytogenes by selective enrichment. No Salmonella spp. or L. monocytogenes isolates were detected in any water samples throughout the study period. Average E. coli levels from all harvested rainwater samples at both sites (1.2 and 24.4 CFU/100 mL) were well below the Good Agricultural Practices food safety guidelines. Only 7 % (3/44) of produce samples from beds irrigated with harvested rainwater were positive for E. coli. E. coli levels in soil samples were positively associated with average surface soil moisture (r2 = 0.13, p = 0.007). Additionally, E. coli presence in water samples was marginally associated with a shorter length of antecedent dry period (fewer days since preceding rainfall) (p = 0.058). Our results suggest that harvested rainwater collected through a first flush system and applied to produce through subsurface irrigation meets current food safety standards. Soil moisture monitoring could further reduce E. coli contamination risks from harvested rainwater-irrigated produce. First flush and subsurface irrigation systems could help mitigate climate change-related water challenges while protecting food safety and security.


Subject(s)
Escherichia coli , Soil , Agricultural Irrigation , Agriculture , Food Safety , Water Microbiology
13.
J Food Prot ; 85(12): 1708-1715, 2022 12 01.
Article in English | MEDLINE | ID: mdl-34855938

ABSTRACT

ABSTRACT: Composted or heat-treated biological soil amendments of animal origin (BSAAOs) can be added to soils to provide nutrients for fresh produce. These products lower the risk of pathogen contamination of fresh produce compared with the use of untreated BSAAOs; however, meteorological conditions, geographic location, and soil properties can influence the presence of pathogenic bacteria or their indicators (e.g., generic Escherichia coli) and allow potential for produce contamination. Replicated field plots of loamy or sandy soils were tilled and amended with dairy manure compost (DMC), poultry litter compost (PLC), or no compost (NoC) over two field seasons and noncomposted heat-treated poultry pellets (HTPPs) during the second field season. Plots were inoculated with a three-strain cocktail of rifampin-resistant E. coli (rE. coli) at levels of 8.7 log CFU/m2. Direct plating and most-probable-number methods measured the persistence of rE. coli and Listeria spp. in plots through 104 days postinoculation. Greater survival of rE. coli was observed in PLC plots in comparison to DMC plots and NoC plots during year 1 (P < 0.05). Similar trends were observed for year 2, when rE. coli survival was also greater in HTPP-amended plots (P < 0.05). Survival of rE. coli depended on soil type, and water potential and temperature were significant covariables. Listeria spp. were found in NoC plots, but not in plots amended with HTPPs, PLC, or DMC. Radish data demonstrate that PLC treatment promoted the greatest level of rE. coli translocation compared with DMC and NoC treatments (P < 0.05). These results are consistent with findings from studies conducted in other regions of the United States, and they inform northeast produce growers that composted and noncomposted poultry-based BSAAOs support greater survival of rE. coli in field soils. This result has the potential to affect the food safety risk of edible produce grown in BSAAO-amended soils as a result of pathogen contamination.


Subject(s)
Listeria , Raphanus , Animals , United States , Manure/microbiology , Soil , Poultry , Escherichia coli , Raphanus/microbiology , Soil Microbiology , Hot Temperature , Crops, Agricultural
14.
Microbiol Spectr ; 9(2): e0066921, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34612697

ABSTRACT

Irrigation water sources have been shown to harbor foodborne pathogens and could contribute to the outbreak of foodborne illness related to consumption of contaminated produce. Determining the probability of and the degree to which these irrigation water sources contain these pathogens is paramount. The purpose of this study was to determine the prevalence of Salmonella enterica and Listeria monocytogenes in alternative irrigation water sources. Water samples (n = 188) were collected over 2 years (2016 to 2018) from 2 reclaimed water plants, 3 nontidal freshwater rivers, and 1 tidal brackish river on Maryland's Eastern Shore (ESM). Samples were collected by filtration using modified Moore swabs (MMS) and analyzed by culture methods. Pathogen levels were quantified using a modified most probable number (MPN) procedure with three different volumes (10 liters, 1 liter, and 0.1 liter). Overall, 65% (122/188) and 40% (76/188) of water samples were positive for S. enterica and L. monocytogenes, respectively. For both pathogens, MPN values ranged from 0.015 to 11 MPN/liter. Pathogen levels (MPN/liter) were significantly (P < 0.05) greater for the nontidal freshwater river sites and the tidal brackish river site than the reclaimed water sites. L. monocytogenes levels in water varied based on season. Detection of S. enterica was more likely with 10-liter filtration compared to 0.1-liter filtration. The physicochemical factors measured attributed only 6.4% of the constrained variance to the levels of both pathogens. This study shows clear variations in S. enterica and L. monocytogenes levels in irrigation water sources on ESM. IMPORTANCE In the last several decades, Maryland's Eastern Shore has seen significant declines in groundwater levels. While this area is not currently experiencing drought conditions or water scarcity, this research represents a proactive approach. Efforts, to investigate the levels of pathogenic bacteria and the microbial quality of alternative irrigation water are important for sustainable irrigation practices into the future. This research will be used to determine the suitability of alternative irrigation water sources for use in fresh produce irrigation to conserve groundwater.


Subject(s)
Agricultural Irrigation , Listeria monocytogenes/isolation & purification , Salmonella enterica/isolation & purification , Water Microbiology , Filtration , Fresh Water/microbiology , Maryland , Water
15.
Microorganisms ; 9(10)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34683330

ABSTRACT

Groundwater depletion is a critical agricultural irrigation issue, which can be mitigated by supplementation with water of higher microbiological risk, including surface and reclaimed waters, to support irrigation needs in the United States. Zero-valent iron (ZVI) filtration may be an affordable and effective treatment for reducing pathogen contamination during crop irrigation. This study was performed to determine the effects of ZVI filtration on the removal and persistence of Escherichia coli, and pepper mild mottle virus (PMMoV) in irrigation water. Water was inoculated with E. coli TVS 353, filtered through a ZVI filtration unit, and used to irrigate cucurbit and cruciferous crops. Water (n = 168), leaf (n = 40), and soil (n = 24) samples were collected, the E. coli were enumerated, and die-off intervals were calculated for bacteria in irrigation water. Variable reduction of PMMoV was observed, however E. coli levels were consistently and significantly (p < 0.05) reduced in the filtered (9.59 lnMPN/mL), compared to unfiltered (13.13 lnMPN/mL) water. The die-off intervals of the remaining bacteria were significantly shorter in the filtered (-1.50 lnMPN/day), as compared to the unfiltered (-0.48 lnMPN/day) water. E. coli transfer to crop leaves and soils was significantly reduced (p < 0.05), as expected. The reduction of E. coli in irrigation water and its transfer to crops, by ZVI filtration is indicative of its potential to reduce pathogens in produce pre-harvest environments.

16.
Article in English | MEDLINE | ID: mdl-33953822

ABSTRACT

The COVID-19 pandemic has had an enormous impact on education globally, forcing the teaching community to think outside the box and create innovative educational plans to benefit students at home. Here, we narrate how the undergraduate, laboratory-based Summer Internship Program of our CONSERVE Center of Excellence, which focuses heavily on engaging women and underrepresented minorities in STEM programming, took a turn from an in-person research experience to a fully virtual one. We share our challenges and how we overcame them. Additionally, we provide a description of our virtual internship professional development curriculum, as well as the creative research projects that our seven interns were able to achieve in an 8-week virtual internship, including projects focused on the microbiological water quality of recycled irrigation water; social media promotion, enhancement and marketing of online educational resources focused on water, microbial contamination, and food crop irrigation; decision support systems for using recycled water in agricultural settings; and the effectiveness of zero-valent iron sand filtration in improving agricultural water quality, to name a few. Upon evaluating our internship program, we observed that more than 80% of our interns were either very satisfied or satisfied with the overall virtual internship experience. Through this experience, both the educators and the interns learned that although a virtual laboratory internship cannot completely replace in-person learning, it can still result in a very meaningful educational experience.

17.
Appl Environ Microbiol ; 87(13): e0021121, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33893119

ABSTRACT

Enteric viruses (EVs) are the largest contributors to foodborne illnesses and outbreaks globally. Their ability to persist in the environment, coupled with the challenges experienced in environmental monitoring, creates a critical aperture through which agricultural crops may become contaminated. This study involved a 17-month investigation of select human EVs and viral indicators in nontraditional irrigation water sources (surface and reclaimed waters) in the Mid-Atlantic region of the United States. Real-time quantitative PCR was used for detection of Aichi virus, hepatitis A virus, and norovirus genotypes I and II (GI and GII, respectively). Pepper mild mottle virus (PMMoV), a common viral indicator of human fecal contamination, was also evaluated, along with atmospheric (air and water temperature, cloud cover, and precipitation 24 h, 7 days, and 14 days prior to sample collection) and physicochemical (dissolved oxygen, pH, salinity, and turbidity) data, to determine whether there were any associations between EVs and measured parameters. EVs were detected more frequently in reclaimed waters (32% [n = 22]) than in surface waters (4% [n = 49]), similar to PMMoV detection frequency in surface (33% [n = 42]) and reclaimed (67% [n = 21]) waters. Our data show a significant correlation between EV and PMMoV (R2 = 0.628, P < 0.05) detection levels in reclaimed water samples but not in surface water samples (R2 = 0.476, P = 0.78). Water salinity significantly affected the detection of both EVs and PMMoV (P < 0.05), as demonstrated by logistic regression analyses. These results provide relevant insights into the extent and degree of association between human (pathogenic) EVs and water quality data in Mid-Atlantic surface and reclaimed waters, as potential sources for agricultural irrigation. IMPORTANCE Microbiological analysis of agricultural waters is fundamental to ensure microbial food safety. The highly variable nature of nontraditional sources of irrigation water makes them particularly difficult to test for the presence of viruses. Multiple characteristics influence viral persistence in a water source, as well as affecting the recovery and detection methods that are employed. Testing for a suite of viruses in water samples is often too costly and labor-intensive, making identification of suitable indicators for viral pathogen contamination necessary. The results from this study address two critical data gaps, namely, EV prevalence in surface and reclaimed waters of the Mid-Atlantic region of the United States and subsequent evaluation of physicochemical and atmospheric parameters used to inform the potential for the use of indicators of viral contamination.


Subject(s)
Agricultural Irrigation , Enterovirus/isolation & purification , Tobamovirus/isolation & purification , Water Pollutants/analysis , Environmental Monitoring , Hydrogen-Ion Concentration , Mid-Atlantic Region , Oxygen/analysis , Salinity , Water Microbiology , Water Pollution/analysis
18.
Appl Environ Microbiol ; 87(7)2021 03 11.
Article in English | MEDLINE | ID: mdl-33483305

ABSTRACT

Biological soil amendments of animal origin (BSAAO) increase nutrient levels in soils to support the production of fruits and vegetables. BSAAOs may introduce or extend the survival of bacterial pathogens which can be transferred to fruits and vegetables to cause foodborne illness. Escherichia coli survival over 120 days in soil plots (3 m2) covered with (mulched) or without plastic mulch (not mulched), amended with either poultry litter, composted poultry litter, heat-treated poultry pellets, or chemical fertilizer, and transfer to cucumbers in 2 years (2018 and 2019) were evaluated. Plots were inoculated with E. coli (8.5 log CFU/m2) and planted with cucumber seedlings (Supremo). The number of days needed to reduce E. coli levels by 4 log CFU (dpi4log) was determined using a sigmoidal decline model. Random forest regression and one-way analysis of variance (ANOVA; P < 0.05) identified predictors (soil properties, nutrients, and weather factors) of dpi4log of E. coli and transfer to cucumbers. The combination of year, amendment, and mulch (25.0% increase in the mean square error [IncMSE]) and year (9.75% IncMSE) were the most prominent predictors of dpi4log and transfer to cucumbers, respectively. Nitrate levels at 30 days and soil moisture at 40 days were also impactful predictors of dpi4log. Differing rainfall amounts in 2018 (24.9 in.) and 2019 (12.6 in.) affected E. coli survival in soils and transfer to cucumbers. Salmonella spp. were recovered sporadically from various plots but were not recovered from cucumbers in either year. Greater transfer of E. coli to cucumbers was also shown to be partially dependent on dpi4log of E. coli in plots containing BSAAO.IMPORTANCE Poultry litter and other biological soil amendments are commonly used fertilizers in fruit and vegetable production and can introduce enteric pathogens such as Escherichia coli O157:H7 or Salmonella previously associated with outbreaks of illness linked to contaminated produce. E. coli survival duration in soils covered with plastic mulch or uncovered and containing poultry litter or heat-treated poultry litter pellets were evaluated. Nitrate levels on day 30 and moisture content in soils on day 40 on specific days were good predictors of E. coli survival in soils; however, the combination of year, amendment, and mulch type was a better predictor. Different cumulative rainfall totals from year to year most likely affected the transfer of E. coli from soils to cucumbers and survival durations in soil. E. coli survival in soils can be extended by the addition of several poultry litter-based soil amendments commonly used in organic production of fruits and vegetables and is highly dependent on temporal variation in rainfall.


Subject(s)
Agriculture/methods , Cucumis sativus/microbiology , Escherichia coli/physiology , Soil Microbiology , Time Factors
19.
Microorganisms ; 8(10)2020 Oct 18.
Article in English | MEDLINE | ID: mdl-33080970

ABSTRACT

The aim of this study was to determine whether and how poultry litter compost and dairy manure compost alter the microbial communities within field soils planted with spinach. In three successive years, separate experimental plots on two fields received randomly assigned compost treatments varying in animal origin: dairy manure (DMC), poultry litter (PLC), or neither (NoC). The composition and function of bacterial and fungal communities were characterized by the amplicon sequencing of marker genes and by the ecoenzyme activity, respectively. The temporal autocorrelation within and among years was adjusted by principal response curves (PRC) to analyze the effect of compost on community composition among treatments. Bacteria in the phylum Bacteriodetes, classes Flavobacteriia and Spingobacteriales (Fluviicola, Flavobacteriia, and Pedobacter), were two to four times more abundant in soils amended with PLC than DMC or NoC consistently among fields and years. Fungi in the phylum Ascomycota were relatively abundant, but their composition was field-specific and without treatment differences. The ecoenzyme data verify that the effects of PLC and DMC on soil communities are based on their microbial composition and not a response to the C source or nutrient content of the compost.

20.
Appl Environ Microbiol ; 86(20)2020 10 01.
Article in English | MEDLINE | ID: mdl-32769196

ABSTRACT

As climate change continues to stress freshwater resources, we have a pressing need to identify alternative (nontraditional) sources of microbially safe water for irrigation of fresh produce. This study is part of the center CONSERVE, which aims to facilitate the adoption of adequate agricultural water sources. A 26-month longitudinal study was conducted at 11 sites to assess the prevalence of bacteria indicating water quality, fecal contamination, and crop contamination risk (Escherichia coli, total coliforms [TC], Enterococcus, and Aeromonas). Sites included nontidal freshwater rivers/creeks (NF), a tidal brackish river (TB), irrigation ponds (PW), and reclaimed water sites (RW). Water samples were filtered for bacterial quantification. E. coli, TC, enterococci (∼86%, 98%, and 90% positive, respectively; n = 333), and Aeromonas (∼98% positive; n = 133) were widespread in water samples tested. Highest E. coli counts were in rivers, TC counts in TB, and enterococci in rivers and ponds (P < 0.001 in all cases) compared to other water types. Aeromonas counts were consistent across sites. Seasonal dynamics were detected in NF and PW samples only. E. coli counts were higher in the vegetable crop-growing (May-October) than nongrowing (November-April) season in all water types (P < 0.05). Only one RW and both PW sites met the U.S. Food Safety Modernization Act water standards. However, implementation of recommended mitigation measures of allowing time for microbial die-off between irrigation and harvest would bring all other sites into compliance within 2 days. This study provides comprehensive microbial data on alternative irrigation water and serves as an important resource for food safety planning and policy setting.IMPORTANCE Increasing demands for fresh fruit and vegetables, a variable climate affecting agricultural water availability, and microbial food safety goals are pressing the need to identify new, safe, alternative sources of irrigation water. Our study generated microbial data collected over a 2-year period from potential sources of irrigation (rivers, ponds, and reclaimed water sites). Pond water was found to comply with Food Safety Modernization Act (FSMA) microbial standards for irrigation of fruit and vegetables. Bacterial counts in reclaimed water, a resource that is not universally allowed on fresh produce in the United States, generally met microbial standards or needed minimal mitigation. We detected the most seasonality and the highest microbial loads in river water, which emerged as the water type that would require the most mitigation to be compliant with established FSMA standards. This data set represents one of the most comprehensive, longitudinal analyses of alternative irrigation water sources in the United States.


Subject(s)
Aeromonas/isolation & purification , Agricultural Irrigation , Enterococcus/isolation & purification , Escherichia coli/isolation & purification , Ponds/microbiology , Rivers/microbiology , Agricultural Irrigation/methods , Delaware , Longitudinal Studies , Maryland , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...